On levels in arrangements of curves

  • Authors:
  • T. M. Chan

  • Affiliations:
  • -

  • Venue:
  • FOCS '00 Proceedings of the 41st Annual Symposium on Foundations of Computer Science
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

Analyzing the worst-case complexity of the k-level in a planar arrangement of n curves is a fundamental problem in combinatorial geometry. We give the first subquadratic upper bound (roughly O(nk/sup 1-2/3/*)) for curves that are graphs of polynomial functions of an arbitrary fixed degree s. Previously, nontrivial results were known only for the case s=1 and s=2. We also improve the earlier bound for pseudo-parabolas (curves that pairwise intersect at most twice) to O(nk/sup 7/9/log/sup 2/3/ k). The proofs are simple and rely on a theorem of Tamaki and Tokuyama on cutting pseudo-parabolas into pseudo-segments, as well as a new observation for cutting pseudo-segments into pieces that can be extended to pseudo-lines. We mention applications to parametric and kinetic minimum spanning trees.