Efficient fault tolerant routings in networks

  • Authors:
  • Andrei Broder;Michael Fischer;Danny Dolev;Barbara Simons

  • Affiliations:
  • -;-;-;-

  • Venue:
  • STOC '84 Proceedings of the sixteenth annual ACM symposium on Theory of computing
  • Year:
  • 1984

Quantified Score

Hi-index 0.00

Visualization

Abstract

We analyze the problem of constructing a network which will have a fixed routing and which will be highly fault tolerant. A construction is presented which forms a “product route graph” from two or more constituent “route graphs.” The analysis involves the surviving route graph, which consists of all non-faulty nodes in the network with two nodes being connected by a directed edge iff the route from the first to the second is still intact after a set of component failures. The diameter of the surviving route graph, that is, the maximum distance between any pair of nodes, is a measure of the worst-case performance degradation caused by the faults. The number of faults tolerated, the diameter, and the degree of the product graph are related in a simple way to the corresponding parameters of the constituent graphs. In addition, there is a “padding theorem” which allows one to add nodes to a graph and to extend a previous routing.