Global Communication Optimization for Tensor Contraction Expressions under Memory Constraints

  • Authors:
  • Daniel Cociorva;Xiaoyang Gao;Sandhya Krishnan;Gerald Baumgartner;Chi-Chung Lam;P. Sadayappan;J. Ramanujam

  • Affiliations:
  • -;-;-;-;-;-;-

  • Venue:
  • IPDPS '03 Proceedings of the 17th International Symposium on Parallel and Distributed Processing
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

The accurate modeling of the electronic structure of atoms and molecules involves computationally intensive tensor contractions involving large multi-dimensional arrays. The efficient computation of complex tensor contractions usually requires the generation of temporary intermediate arrays. These intermediates could be extremely large, but they can often be generated and used in batches through appropriate loop fusion transformations. To optimize the performance of such computations on parallel computers, the total amount of inter-processor communication must be minimized, subject to the available memory on each processor. In this paper, we address the memory-constrained communication minimization problem in the context of this class of computations. Based on a framework that modelsthe relationship between loop fusion and memory usage, we develop an approach to identify the best combination of loop fusion and data partitioning that minimizes inter-processor communication cost without exceeding the per-processor memory limit. The effectiveness of the developed optimization approach is demonstrated on a computation representative of a component used in quantum chemistry suites.