Real-time focus range sensor

  • Authors:
  • S. K. Nayar;M. Watanabe;M. Noguchi

  • Affiliations:
  • -;-;-

  • Venue:
  • ICCV '95 Proceedings of the Fifth International Conference on Computer Vision
  • Year:
  • 1995

Quantified Score

Hi-index 0.00

Visualization

Abstract

Structures of dynamic scenes can only be recovered using a real-time range sensor. Depth-from-defocus offers a direct solution to fast and dense range estimation. It is computationally efficient as it circumvents the correspondence problem faced by stereo and feature tracking in structure-from-motion. However, accurate depth estimation requires theoretical and practical solutions to a variety of problems including the recovery of textureless surfaces, precise blur estimation, and magnification variations caused by defocusing. Both textured and textureless surfaces are recovered using an illumination pattern that is projected via the same optical path used to acquire images. The illumination pattern is optimized to ensure maximum accuracy and spatial resolution in the computed depth. The relative blurring in two images is computed using a narrow-band linear operator that is designed by considering all the optical, sensing and computational elements of the depth-from-defocus system. Defocus-invariant magnification is achieved by the use of an additional aperture in the imaging optics. A prototype focus range sensor has been developed that produces up to 512/spl times/480 depth estimates at 30 Hz with an accuracy better than 0.3%. Several experimental results are included to demonstrate the performance of the sensor.