Direct estimation of affine image deformations using visual front-end operations with automatic scale selection

  • Authors:
  • T. Lindeberg

  • Affiliations:
  • -

  • Venue:
  • ICCV '95 Proceedings of the Fifth International Conference on Computer Vision
  • Year:
  • 1995

Quantified Score

Hi-index 0.00

Visualization

Abstract

This article deals with the problem of estimating deformations of brightness patterns using visual front-end operations. Estimating such deformations constitutes an important subtask in several computer vision problems relating to image correspondence and shape estimation. The following subjects are treated: The problem of decomposing affine flow fields into simpler components is analysed in detail. A canonical parametrization is presented based on singular value decomposition, which naturally separates the rotationally invariant components of the flow field from the rotationally variant ones. A novel mechanism is presented for automatic selection of scale levels when estimating local affine deformations. This mechanism is expressed within a multiscale framework where disparity estimates are computed in a hierarchical coarse-to-fine manner and corrected using iterative techniques. Then, deformation estimates are selected from the scales that minimize a certain normalized residual over scales. Finally, the descriptors so obtained serve as initial data for computing refined estimates of the local deformations.