Accurate and Efficient Static Timing Analysis with Crosstalk

  • Authors:
  • I-De Huang

  • Affiliations:
  • -

  • Venue:
  • ICCD '02 Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD'02)
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

We have developed an accurate and efficient methodology to perfonn static timing analysis (STA) in combinational logic blocks in the presence of multiple crosstalk-induced noise effects. The crosstalk model used is more accurate because it considers skew, input transitiontimes, and driver strengths. This crosstalk model is enhanced to handle timing ranges for performing STA. The methodology also uses more accurate delay models for gates. The presence of one or more coupling capacitances can create cyclic timing dependencies, evenin an otherwise acyclic circuit. We have developed an approach to partition the circuit into minimal timing-iterative sub circuits (TISs) that encapsulate the cyclic timing dependencies. When used in conjunction with our levelization procedure, iterative timing analysis is confinedwithin individual TISs. We have demonstrated that the maximum arrival time values computed by the proposed STA using integrated delay models are much closer to detailed circuit simulation results than an STA that uses the 3Cc delay model.