PASM: a reconfigurable parallel system for image processing

  • Authors:
  • Howard Jay Siegel;Thomas Schwederski;Nathaniel J. Davis, IV;James T. Kuehn

  • Affiliations:
  • Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN

  • Venue:
  • ACM SIGARCH Computer Architecture News
  • Year:
  • 1984

Quantified Score

Hi-index 0.00

Visualization

Abstract

PASM is a multifunction partitionable SIMD/MIMD system being designed at Purdue for parallel image understanding. It is to be a large-scale, dynamically reconfigurable multimicroprocessor system, which will incorporate over 1,000 complex processing elements. Parallel algorithm studies and simulations have been used to analyze application tasks in order to guide design decisions. A prototype of PASM is under construction (funded by an equipment grant from IBM), including 30 Motorola MC68010 processors, a multistage interconnection network, five disk drives, and connections to the Purdue Engineering Computer Network (for access to peripherals, terminals, software development tools, etc.). PASM is to serve as a vehicle for studying the use of parallelism for performing the numeric and symbolic processing needed for tasks such as computer vision. The PASM design concepts and prototype are overviewed and brief examples of parallel algorithms are given.