Convergence and Loss Bounds for Bayesian Sequence Prediction

  • Authors:
  • Marcus Hutter

  • Affiliations:
  • -

  • Venue:
  • Convergence and Loss Bounds for Bayesian Sequence Prediction
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

The probability of observing $x_t$ at time $t$, given past observations $x_1...x_{t-1}$ can be computed with Bayes'' rule if the true generating distribution $\mu$ of the sequences $x_1x_2x_3...$ is known. If $\mu$ is unknown, but known to belong to a class $M$ one can base ones prediction on the Bayes mix $\xi$ defined as a weighted sum of distributions $\nu\in M$. Various convergence results of the mixture posterior $\xi_t$ to the true posterior $\mu_t$ are presented. In particular a new (elementary) derivation of the convergence $\xi_t/\mu_t\to 1$ is provided, which additionally gives the rate of convergence. A general sequence predictor is allowed to choose an action $y_t$ based on $x_1...x_{t-1}$ and receives loss $\ell_{x_t y_t}$ if $x_t$ is the next symbol of the sequence. No assumptions are made on the structure of $\ell$ (apart from being bounded) and $M$. The Bayes-optimal prediction scheme $\Lambda_\xi$ based on mixture $\xi$ and the Bayes-optimal informed prediction scheme $\Lambda_\mu$ are defined and the total loss $L_\xi$ of $\Lambda_\xi$ is bounded in terms of the total loss $L_\mu$ of $\Lambda_\mu$. It is shown that $L_\xi$ is bounded for bounded $L_\mu$ and $L_\xi/L_\mu\to 1$ for $L_\mu\to \infty$. Convergence of the instantaneous losses are also proven.