Geometric ad-hoc routing: of theory and practice

  • Authors:
  • Fabian Kuhn;Rogert Wattenhofer;Yan Zhang;Aaron Zollinger

  • Affiliations:
  • ETH Zurich, Zurich, Switzerland;ETH Zurich, Zurich, Switzerland;ETH Zurich, Zurich, Switzerland;ETH Zurich, Zurich, Switzerland

  • Venue:
  • Proceedings of the twenty-second annual symposium on Principles of distributed computing
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

All too often a seemingly insurmountable divide between theory and practice can be witnessed. In this paper we try to contribute to narrowing this gap in the field of ad-hoc routing. In particular we consider two aspects: We propose a new geometric routing algorithm which is outstandingly efficient on practical average-case networks, however is also in theory asymptotically worst-case optimal. On the other hand we are able to drop the formerly necessary assumption that the distance between network nodes may not fall below a constant value, an assumption that cannot be maintained for practical networks. Abandoning this assumption we identify from a theoretical point of view two fundamentamentally different classes of cost metrics for routing in ad-hoc networks.