Computational Depth

  • Authors:
  • Luis Antunes;Lance Fortnow; Dieter Van Melkebeek

  • Affiliations:
  • -;-;-

  • Venue:
  • CCC '01 Proceedings of the 16th Annual Conference on Computational Complexity
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

Abstract: We introduce Computational Depth, a measure for the amount of "nonrandom" or "useful" information in a string by considering the difference of various Kolmogorov complexity measures. We investigate three instantiations of Computational Depth: 1) Basic Computational Depth, a clean notion capturing the spirit of Bennett's Logical Depth. 2) Time-t Computational Depth and the resulting concept of Shallow Sets, a generalization of sparse and random sets based on low depth properties of their characteristic sequences. We show that every computable set that is reducible to a shallow set has polynomial-size circuits. 3) Distinguishing Computational Depth, measuring when strings are easier to recognize than to produce. We show that if a Boolean formula has a nonnegligible fraction of its satisfying assignments with low depth, then we can find a satisfying assignment efficiently.