Omnidirectionally Balanced Multiwavelets for Vector Wavelet Transforms

  • Authors:
  • James E. Fowler;Li Hua

  • Affiliations:
  • -;-

  • Venue:
  • DCC '02 Proceedings of the Data Compression Conference
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Vector wavelet transforms for vector-valued fields can be implemented directly from multiwavelets; however, existing multiwavelets offer surprisingly poor performance for transforms in vector-valued signal-processing applications. In this paper, the reason for this performance failure is identified, and a remedy is proposed. A multiwavelet design criterion, omnidirectional balancing, is introduced to extend to vector transforms the balancing philosophy previously proposed for multiwavelet-based scalar-signal expansion. Additionally, a family of symmetric-antisymmetric multiwavelets is designed according to the omnidirectional-balancing criterion. In empirical results for a vector-field compression system, it is observed that the performance of vector wavelet transforms derived from these omnidirectionally-balanced symmetric-antisymmetric multiwavelets is far superior to that of transforms implemented via other multiwavelets.