Equivalence in finite-variable logics is complete for polynomial time

  • Authors:
  • M. Grohe

  • Affiliations:
  • -

  • Venue:
  • FOCS '96 Proceedings of the 37th Annual Symposium on Foundations of Computer Science
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

How difficult is it to decide whether two finite structures can be distinguished in a given logic? For first order logic, this question is equivalent to the graph isomorphism problem with its well-known complexity theoretic difficulties. Somewhat surprisingly, the situation is much clearer when considering the fragments L/sup k/ of first-order logic whose formulae contain at most k (free or bound) variables (for some k/spl ges/1). We show that for each k/spl ges/2, equivalence in the k-variable logic L/sup k/ is complete for polynomial time under quantifier-free reductions (a weak form of NC/sub 0/ reductions). Moreover, we show that the same completeness result holds for the powerful extension C/sup k/ of L/sup k/ with counting quantifiers (for every k/spl ges/2).