A CORBA-Based Development Environment for Wrapping and Coupling Legacy Scientific Codes

  • Authors:
  • Gregory Follen;Chan Kim;Isaac Lopez;Scott Townsend;Janche Sang

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • HPDC '01 Proceedings of the 10th IEEE International Symposium on High Performance Distributed Computing
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

Abstract: Within NASA's High Performance Computing and Communication (HPCC) program, the NASA Glenn Research Center(GRC) is developing a large scale, detailed simulation environment for the analysis and design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). The three major aspects of modeling capabilities focused in NPSS, including integration of different engine components, coupling of multiple disciplines, and engine component zooming at appropriate level of fidelity, require relatively tight coupling of different analysis codes. Most of these codes in aerodynamics and solid mechanics are written in Fortran. Refitting these legacy Fortran codes with distributed objects can increase these codes reusability. In this paper, we describe our experiences in building a CORBA-based development environment for programmers to easily wrap and couple legacy Fortran codes. This environment consists of a C++ wrapper library to hide the details of CORBA and an efficient remote variable scheme to facilitate data exchange between the client and the server. We also report empirical performance evaluation results and describe current applications.