Accurate modeling of parallel scientific computations

  • Authors:
  • D. M. Nicol;J. C. Townsend

  • Affiliations:
  • -;-

  • Venue:
  • SIGMETRICS '89 Proceedings of the 1989 ACM SIGMETRICS international conference on Measurement and modeling of computer systems
  • Year:
  • 1989

Quantified Score

Hi-index 0.00

Visualization

Abstract

Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top performance it is necessary to partition the grid so as to balance workload and minimize communication/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the course of the computation, and is not known until load-time. Critical mapping and remapping decisions rest on our ability to accurately predict performance, given a description of a grid and its partition. This paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. The models we construct are shown empirically to be accurate, and are used to find optimal remapping schedules.