Reconstructing Convex Sets from Support Line Measurements

  • Authors:
  • J. L. Prince;A. S. Willsky

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Pattern Analysis and Machine Intelligence
  • Year:
  • 1990

Quantified Score

Hi-index 0.14

Visualization

Abstract

Algorithms are proposed for reconstructing convex sets given noisy support line measurements. It is observed that a set of measured support lines may not be consistent with any set in the plane. A theory of consistent support lines which serves as a basis for reconstruction algorithms that take the form of constrained optimization algorithms is developed. The formal statement of the problem and constraints reveals a rich geometry that makes it possible to include prior information about object position and boundary smoothness. The algorithms, which use explicit noise models and prior knowledge, are based on maximum-likelihood and maximum a posteriori estimation principles and are implemented using efficient linear and quadratic programming codes. Experimental results are presented. This research sets the stage for a more general approach to the incorporation of prior information concerning the estimation of object shape.