Autonomous mental development in high dimensional context and action spaces

  • Authors:
  • Ameet Joshi;Juyang Weng

  • Affiliations:
  • Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI;Department of Computer Science and Engineering, Michigan State University, East Lansing, MI

  • Venue:
  • Neural Networks - 2003 Special issue: Advances in neural networks research — IJCNN'03
  • Year:
  • 2003

Quantified Score

Hi-index 0.02

Visualization

Abstract

Autonomous Mental Development (AMD) of robots opened a new paradigm for developing machine intelligence, using neural network type of techniques and it fundamentally changed the way an intelligent machine is developed from manual to autonomous. The work presented here is a part of SAIL (Self-Organizing Autonomous Incremental Learner) project which deals with autonomous development of humanoid robot with vision, audition, manipulation and locomotion. The major issue addressed here is the challenge of high dimensional action space (5-10) in addition to the high dimensional context space (hundreds to thousands and beyond), typically required by an AMD machine. This is the first work that studies a high dimensional (numeric) action space in conjunction with a high dimensional perception (context state) space, under the AMD mode. Two new learning algorithms, Direct Update on Direction Cosines (DUDC) and High-Dimensional Conjugate Gradient Search (HCGS), are developed, implemented and tested. The convergence properties of both the algorithms and their targeted applications are discussed. Autonomous learning of speech production under reinforcement learning is studied as an example.