Synchrony of fast-spiking interneurons interconnected by GABAergic and electrical synapses

  • Authors:
  • Masaki Nomura;Tomoki Fukai;Toshio Aoyagi

  • Affiliations:
  • Department of Applied Analysis and Complex Dynamical Systems, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan, and CREST, Japan Science and Technology Corporation, Kawaguch ...;Department of Information-Communication Engineering, Tamagawa University, Tokyo 194-8610, Japan/ CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan;Department of Applied Analysis and Complex Dynamical Systems, Graduate School of lnformatics, Kyoto University, Kyoto 606-8501, Japan, and CREST, Japan Science and Technology Corporation, Kawaguch ...

  • Venue:
  • Neural Computation
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Fast-spiking (FS) interneurons have specific types (Kv3.1/3.2 type) of the delayed potassium channel, which differ from the conventional Hodgkin-Huxley (HH) type potassium channel (Kv1.3 type) in several aspects. In this study, we show dramatic effects of the Kv3.1/3.2 potassium channel on the synchronization of the FS interneurons. We show analytically that two identical electrically coupled FS interneurons modeled with Kv3.1/3.2 channel fire synchronously at arbitrary firing frequencies, unlike similarly coupled FS neurons modeled with Kv1.3 channel that show frequency-dependent synchronous and antisynchronous firing states. Introducing GABAA receptor-mediated synaptic connections into an FS neuron pair tends to induce an antisynchronous firing state, even if the chemical synapses are bidirectional. Accordingly, an FS neuron pair connected simultaneously by electrical and chemical synapses achieves both synchronous firing state and antisynchronous firing state in a physiologically plausible range of the conductance ratio between electrical and chemical synapses. Moreover, we find that a large-scale network of FS interneurons connected by gap junctions and bidirectional GABAergic synapses shows similar bistability in the range of gamma frequencies (30-70 Hz).