Bounded Geometries, Fractals, and Low-Distortion Embeddings

  • Authors:
  • Anupam Gupta;Robert Krauthgamer;James R. Lee

  • Affiliations:
  • -;-;-

  • Venue:
  • FOCS '03 Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science
  • Year:
  • 2003

Quantified Score

Hi-index 0.07

Visualization

Abstract

The doubling constant of a metric space (X, d) is the smallest value \lambda such that every ball in X can be covered by \lambda balls of half the radius. The doubling dimension of X is then defined as \dim (X) = \log _2 \lambda. A metric (or sequence of metrics) is called doubling precisely when its doubling dimension is bounded. This is a robust class of metric spaces which contains many families of metrics that occur in applied settings.We give tight bounds for embedding doubling metrics into (low-dimensional) normed spaces. We consider both general doubling metrics, as well as more restricted families such as those arising from trees, from graphs excluding a fixed minor, and from snowflaked metrics. Our techniques include decomposition theorems for doubling metrics, and an analysis of a fractal in the plane due to Laakso [21]. Finally, we discuss some applications and point out a centralopen question regarding dimensionality reduction in L2.