The Turán Theorem for Random Graphs

  • Authors:
  • Yoshiharu Kohayakawa;Vojtěch Rödl;Mathias Schacht

  • Affiliations:
  • Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090 São Paulo, Brazil (e-mail: yoshi@ime.usp.br);Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA (e-mail: rodl@mathcs.emory.edu);Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA (e-mail: mschach@mathcs.emory.edu)

  • Venue:
  • Combinatorics, Probability and Computing
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

The aim of this paper is to prove a Turán-type theorem for random graphs. For $\gamma 0$ and graphs $G$ and $H$, write $G\to_\gamma H$ if any $\gamma$-proportion of the edges of $G$ spans at least one copy of $H$ in $G$. We show that for every graph $H$ and every fixed real $\delta0$, almost every graph $G$ in the binomial random graph model $\cG(n,q)$, with $q=q(n)\gg((\log n)^4/n)^{1/d(H)}$, satisfies $G\to_{(\chi(H)-2)/(\chi(H)-1)+\delta}H$, where as usual $\chi(H)$ denotes the chromatic number of $H$ and $d(H)$ is the ‘degeneracy number’ of $H$.Since $K_l$, the complete graph on $l$ vertices, is $l$-chromatic and $(l-1)$-degenerate, we infer that for every $l\geq2$ and every fixed real $\delta0$, almost every graph $G$ in the binomial random graph model $\cG(n,q)$, with $q=q(n)\gg((\log n)^4/n)^{1/(l-1)}$, satisfies $G\to_{(l-2)/(l-1)+\delta}K_l$.