On Generalized Max-Min Rate Allocation and Distributed Convergence Algorithm for Packet Networks

  • Authors:
  • Y. Thomas Hou;Shivendra S. Panwar;Henry H. -Y. Tzeng

  • Affiliations:
  • -;-;-

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 2004

Quantified Score

Hi-index 0.02

Visualization

Abstract

Abstract--This paper considers the fundamental problem of bandwidth allocation among flows in a packet-switched network. The classical max-min rate allocation has been widely regarded as a fair rate allocation policy. But, for a flow with a minimum rate requirement and a peak rate constraint, the classical max-min policy no longer suffices to determine rate allocation since it is not capable of supporting either the minimum rate or the peak rate constraint from a flow. In this paper, we generalize the theory of the classical max-min rate allocation with the support of both the minimum rate and peak rate constraints for each flow. Additionally, to achieve generalized max-min rate allocation in a fully distributed packet network, we present a distributed algorithm that uses a feedback-based flow control mechanism. Our design not only offers a fresh perspective on flow marking technique, but also advances the state-of-the-art flow marking technique favored by other researchers. We provide proof that such a distributed algorithm, through asynchronous iterations, will always converge to the generalized max-min rate allocation under any network configuration and any set of link distances. We use simulation results to demonstrate the fast convergence property of the distributed algorithm.