Non-migratory online deadline scheduling on multiprocessors

  • Authors:
  • Ho-Leung Chan;Tak-Wah Lam;Kar-Keung To

  • Affiliations:
  • University of Hong Kong;University of Hong Kong;University of Hong Kong

  • Venue:
  • SODA '04 Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we consider multiprocessor scheduling with hard deadlines and investigate the cost of eliminating migration in the online setting. Let I be any set of jobs that can be completed by some migratory offline schedule on m processors. We show that I can also be completed by a non-migratory online schedule using m speed-5.828 processors (i.e., processors of 5.828 times faster). This result supplements the previous results that I can also be completed by a non-migratory offline schedule using 6m unit-speed processors [8] or a migratory online schedule using m speed-2 processors [13]. Our result is based on a simple conservative scheduling algorithm called PARK which commits a processor to a job only when the processor has zero commitment before its deadline. A careful analysis of PARK further shows that the processor speed can be reduced arbitrarily close to 1 by exploiting more processors (say, using 16m speed-1.8 processors). PARK also finds application in overloaded systems; it gives the first online non-migratory algorithm that can exploit moderately faster processors to match the performance of any migratory offline algorithm.