A bézier-based approach to unstructured moving meshes

  • Authors:
  • David Cardoze;Alexandre Cunha;Gary L. Miller;Todd Phillips;Noel Walkington

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA

  • Venue:
  • SCG '04 Proceedings of the twentieth annual symposium on Computational geometry
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a new framework for maintaining the quality of two dimensional triangular moving meshes. The use of curved elements is the key idea that allows us to avoid excessive refinement and still obtain good quality meshes consisting of a low number of well shaped elements. We use B-splines curves to model object boundaries, and objects are meshed with second order Bézier triangles. As the mesh evolves according to a non-uniform flow velocity field, we keep track of object boundaries and, if needed, carefully modify the mesh to keep it well shaped by applying a combination of vertex insertion and deletion, edge flipping, and edge smoothing operations at each time step. Our algorithms for these tasks are extensions of known algorithms for meshes built of straight--sided elements and are designed for any fixed-order Bézier elements and B-splines. Although in this work we have concentrated on quadratic elements, most of the operations are valid for elements of any order and they generalize well to higher dimensions. We present results of our scheme for a set of objects mimicking red blood cells subject to a precomputed flow velocity field.