Expander flows, geometric embeddings and graph partitioning

  • Authors:
  • Sanjeev Arora;Satish Rao;Umesh Vazirani

  • Affiliations:
  • Princeton University, Princeton, NJ;UC Berkeley;UC Berkeley

  • Venue:
  • STOC '04 Proceedings of the thirty-sixth annual ACM symposium on Theory of computing
  • Year:
  • 2004

Quantified Score

Hi-index 0.02

Visualization

Abstract

We give a O(√log n)-approximation algorithm for sparsest cut, balanced separator, and graph conductance problems. This improves the O(log n)-approximation of Leighton and Rao (1988). We use a well-known semidefinite relaxation with triangle inequality constraints. Central to our analysis is a geometric theorem about projections of point sets in Rd, whose proof makes essential use of a phenomenon called measure concentration. We also describe an interesting and natural "certificate" for a graph's expansion, by embedding an n-node expander in it with appropriate dilation and congestion. We call this an expander flow.