Opportunistic multi-access: multiuser diversity, relay-aided opportunistic scheduling, and traffic-aided smooth admission control

  • Authors:
  • Ming Hu;Junshan Zhang

  • Affiliations:
  • Department of Electrical Engineering, Arizona State University, Tempe, AZ;Department of Electrical Engineering, Arizona State University, Tempe, AZ

  • Venue:
  • Mobile Networks and Applications
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study multi-access control in opportunistic communication systems, and propose two new schemes to address channel asymmetry and throughput-guaranteed admission control, respectively. We first devise a relay-aided opportunistic scheduling (RAOS) scheme, in which a user can choose to communicate with the base station either directly or using multiple hops (relay transmissions). We develop relay/direct link construction algorithms using either a channel-capacity-based criterion or a throughput-based criterion, and devise opportunistic scheduling schemes accordingly. Our results show that in the presence of channel asymmetry across users, the RAOS scheme performs significantly better than Qualcomm's HDR scheme. Next, we propose a traffic-aided smooth admission control (SAC) scheme that aims to guarantee throughput provisioning. Simply put, in the SAC scheme, the admission decision is "spread" over a trial period, by increasing gradually the amount of the time resource allocated to incoming users. Specifically, using the modified weighted proportional fair (WPF) scheduling, we devise a QoS driven weight adaptation algorithm, and the weights assigned to new users are increased in a guarded manner. Then an admission decision is made based on the measured throughput within a time-out window. A key feature is that we exploit explicitly the traffic information and throughput requirements in devising the back-off time. Our results show that the proposed SAC scheme works well in opportunistic communication systems.