Learning low dimensional predictive representations

  • Authors:
  • Matthew Rosencrantz;Geoff Gordon;Sebastian Thrun

  • Affiliations:
  • Carnegie Mellon University, Forbes Avenue, Pittsburgh, PA;CALD, Carnegie Mellon University, Forbes Avenue, Pittsburgh, PA;Stanford University, Serra Mall, Stanford, CA

  • Venue:
  • ICML '04 Proceedings of the twenty-first international conference on Machine learning
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Predictive state representations (PSRs) have recently been proposed as an alternative to partially observable Markov decision processes (POMDPs) for representing the state of a dynamical system (Littman et al., 2001). We present a learning algorithm that learns a PSR from observational data. Our algorithm produces a variant of PSRs called transformed predictive state representations (TPSRs). We provide an efficient principal-components-based algorithm for learning a TPSR, and show that TPSRs can perform well in comparison to Hidden Markov Models learned with Baum-Welch in a real world robot tracking task for low dimensional representations and long prediction horizons.