Mapping of Microbial Pathways through Constrained Mapping of Orthologous Genes

  • Authors:
  • Victor Olman;Hanchuan Peng;Zhengchang Su;Ying Xu

  • Affiliations:
  • University of Georgia;University of Georgia and Oak Ridge National Laboratory;University of Georgia and Oak Ridge National Laboratory;University of Georgia and Oak Ridge National Laboratory

  • Venue:
  • CSB '04 Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a novel computer algorithm for mapping biological pathways from one prokaryotic genome to another. The algorithm maps genes in a known pathway to their homologous genes (if any) in a target genome that is most consistent with (a) predicted orthologous gene relationship, (b) predicted operon structures, and (c) predicted co-regulation relationship of operons. Mathematically, we have formulated this problem as a constrained minimum spanning tree problem (called a Steiner network problem), and demonstrated that this formulation has the desired property through applications. We have solved this mapping problem using a combinatorial optimization algorithm, with guaranteed global optimality. We have implemented this algorithm as a computer program, called PMAP. Our test results on pathway mapping are highly encouraging -- we have mapped a number of pathways of H. influenzae, B. subtilis, H. pylori, and M. tuberculosis to E. coli using P-MAP, whose homologous pathways in E coli. are known and hence the mapping accuracy could be checked. We have then mapped known E. coli pathways in the EcoCyc database to the newly sequenced organism Synechococcus sp WH8102, and predicted 158 Synechococcus pathways. Detailed analyses on the predicted pathways indicate that P-MAPýs mapping results are consistent with our general knowledge about (local) pathways. We believe that P-MAP will be a useful tool for microbial genome annotation projects and inference of individual microbial pathways.