ALOHA packet system with and without slots and capture

  • Authors:
  • Lawrence G. Roberts

  • Affiliations:
  • Telenet Communications Corporation, Washington, D.C.

  • Venue:
  • ACM SIGCOMM Computer Communication Review
  • Year:
  • 1975

Quantified Score

Hi-index 0.07

Visualization

Abstract

This paper was originally distributed informally as ARPA Satellite System Note 8 on June 26, 1972. The paper is an important one and since its initial limited distribution, the paper has been frequently referenced in the open literature, but the paper itself has been unavailable in the open literature. Publication here is meant to correct the previous gap in the literature. As the paper was originally distributed only to other researchers intimately familiar with the area covered by the paper, the paper makes few concessions to the reader along the lines of introductory or tutorial material. Therefore, a bit of background material follows. ALOHA packet systems were originally described by Abramson ("The ALOHA System--Another Alternative for Computer Communication," Proceedings of the AFIPS Fall Joint Computer Conference, Vol. 37, 1970, pp. 281--285). In an ALOHA a single broadcast channel is shared by a number of communicating devices. In the version originally described by Abramson, every device transmits its packets independent of any other device or any specific time. That is, the device transmits the whole packet at a random point in time; the device then times out for receiving an acknowledgment. If an acknowledgment is not received, it is assumed that a collision occured with a packet transmitted by some other device and the packet is retransmitted after a random additional waiting time (to avoid repeated collisions). Under a certain set of assumptions, Abramson showed that the effective capacity of such a channel is 1/(2e). Roberts in the present paper investigates methods of increasing the effective channel capacity of such a channel. One method he proposes to gain in capacity is to consider the channel to be slotted into segments of time whose duration is equal to the packet transmission time, and to require the devices to begin a packet transmission at the beginning of a time slot. Another method Roberts proposes to gain in capacity is to take advantage of the fact that even though packets from two devices collide in the channel (i.e., they are transmitted so they pass through the channel at overlapping times), it may be possible for the receiver(s) to "capture" the signal of one of the transmitters, and thus correctly receive one of the conflicting packets, if one of the transmitters has a sufficiently greater signal than the other. Roberts considers the cases of both satellite and ground radio channels.