Bimodal HCI-related affect recognition

  • Authors:
  • Zhihong Zeng;Jilin Tu;Ming Liu;Tong Zhang;Nicholas Rizzolo;Zhenqiu Zhang;Thomas S. Huang;Dan Roth;Stephen Levinson

  • Affiliations:
  • University of Illinois at Urbana-Champaign;University of Illinois at Urbana-Champaign;University of Illinois at Urbana-Champaign;University of Illinois at Urbana-Champaign;University of Illinois at Urbana-Champaign;University of Illinois at Urbana-Champaign;University of Illinois at Urbana-Champaign;University of Illinois at Urbana-Champaign;University of Illinois at Urbana-Champaign

  • Venue:
  • Proceedings of the 6th international conference on Multimodal interfaces
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Perhaps the most fundamental application of affective computing will be Human-Computer Interaction (HCI) in which the computer should have the ability to detect and track the user's affective states, and make corresponding feedback. The human multi-sensor affect system defines the expectation of multimodal affect analyzer. In this paper, we present our efforts toward audio-visual HCI-related affect recognition. With HCI applications in mind, we take into account some special affective states which indicate users' cognitive/motivational states. Facing the fact that a facial expression is influenced by both an affective state and speech content, we apply a smoothing method to extract the information of the affective state from facial features. In our fusion stage, a voting method is applied to combine audio and visual modalities so that the final affect recognition accuracy is greatly improved. We test our bimodal affect recognition approach on 38 subjects with 11 HCI-related affect states. The extensive experimental results show that the average person-dependent affect recognition accuracy is almost 90% for our bimodal fusion.