URSA: ubiquitous and robust access control for mobile ad hoc networks

  • Authors:
  • Haiyun Luo;Jiejun Kong;Petros Zerfos;Songwu Lu;Lixia Zhang

  • Affiliations:
  • Computer Science Department, University of California, Los Angeles, CA;Computer Science Department, University of California, Los Angeles, CA;Computer Science Department, University of California, Los Angeles, CA;Computer Science Department, University of California, Los Angeles, CA;Computer Science Department, University of California, Los Angeles, CA

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Restricting network access of routing and packet forwarding to well-behaving nodes and denying access from misbehaving nodes are critical for the proper functioning of a mobile ad-hoc network where cooperation among all networking nodes is usually assumed. However, the lack of a network infrastructure, the dynamics of the network topology and node membership, and the potential attacks from inside the network by malicious and/or noncooperative selfish nodes make the conventional network access control mechanisms not applicable. We present URSA, a ubiquitous and robust access control solution for mobile ad hoc networks. URSA implements ticket certification services through multiple-node consensus and fully localized instantiation. It uses tickets to identify and grant network access to well-behaving nodes. In URSA, no single node monopolizes the access decision or is completely trusted. Instead, multiple nodes jointly monitor a local node and certify/revoke its ticket. Furthermore, URSA ticket certification services are fully localized into each node's neighborhood to ensure service ubiquity and resilience. Through analysis, simulations, and experiments, we show that our design effectively enforces access control in the highly dynamic, mobile ad hoc network.