TCP with adaptive pacing for multihop wireless networks

  • Authors:
  • Sherif M. ElRakabawy;Alexander Klemm;Christoph Lindemann

  • Affiliations:
  • University of Dortmund, Dortmund, Germany;University of Dortmund, Dortmund, Germany;University of Dortmund, Dortmund, Germany

  • Venue:
  • Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we introduce a novel congestion control algorithm for TCP over multihop IEEE 802.11 wireless networks implementing rate-based scheduling of transmissions within the TCP congestion window. We show how a TCP sender can adapt its transmission rate close to the optimum using an estimate of the current 4-hop propagation delay and the coefficient of variation of recently measured round-trip times. The novel TCP variant is denoted as TCP with Adaptive Pacing (TCP-AP). Opposed to previous proposals for improving TCP over multihop IEEE 802.11 networks, TCP-AP retains the end-to-end semantics of TCP and does neither rely on modifications on the routing or the link layer nor requires cross-layer information from intermediate nodes along the path. A comprehensive simulation study using ns-2 shows that TCP-AP achieves up to 84% more goodput than TCP NewReno, provides excellent fairness in almost all scenarios, and is highly responsive to changing traffic conditions.