CYRF: a theory of window-based unicast congestion control

  • Authors:
  • Nishanth R. Sastry;Simon S. Lam

  • Affiliations:
  • International Business Machines Corporation, Westford, MA;Department of Computer Sciences, University of Texas at Austin, Austin, TX

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

This work presents a comprehensive theoretical framework for memoryless window-based congestion control protocols that are designed to converge to fairness and efficiency. We first derive a necessary and sufficient condition for stepwise convergence to fairness. Using this, we show how fair window increase/decrease policies can be constructed from suitable pairs of monotonically nondecreasing functions. We generalize this to smooth protocols that converge over each congestion epoch. The framework also includes a simple method for incorporating TCP-friendliness.Well-studied congestion control protocols such as TCP, GAIMD, and Binomial congestion control can be constructed using this method. Thus, we provide a common framework for the analysis of such window-based protocols. We also present two new congestion control protocols for streaming media-like applications as examples of protocol design in this framework: The first protocol, LOG, has the objective of reconciling the smoothness requirement of an application with the need for a fast dynamic response to congestion.The second protocol, SIGMOID, guarantees a minimum bandwidth for an application but behaves exactly like TCP for large windows.