Imaging the Cardiovascular Pulse

  • Authors:
  • Nanfei Sun;Marc Garbey;Arcangelo Merla;Ioannis Pavlidis

  • Affiliations:
  • University of Houston;University of Houston;Università G. DýAnnunzio;University of Houston

  • Venue:
  • CVPR '05 Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 2 - Volume 02
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We have developed a novel method to measure human cardiac pulse at a distance. It is based on the information contained in the thermal signal emitted from major superficial vessels. This signal is acquired through a highly sensitive thermal imaging system. Temperature on the vessel is modulated by pulsative blood flow. To compute the frequency of modulation (pulse), we extract a line-based region along the vessel. Then, we apply Fast Fourier Transform (FFT) to individual points along this line of interest to capitalize on the pulse propagation effect. Finally, we use an adaptive estimation function on the average FFT outcome to quantify the pulse. We have tested the accuracy of our method on 5 subjects with highly successful results. The technology is expected to find applications among others in sustained physiological monitoring of cardiopulmonary diseases, sport training, sleep studies, and psychophysiology (polygraph).