Performance analysis of a QoS capable cluster interconnect

  • Authors:
  • Eun Jung Kim;Ki Hwan Yum;Chita R. Das

  • Affiliations:
  • Department of Computer Science, Texas A&M University, College Station, TX 77843, USA;Department of Computer Science, University of Texas, San Antonio, TX 78249, USA;Department of Computer Science and Engineering, the Pennsylvania State University, University Park, PA 16802, USA

  • Venue:
  • Performance Evaluation - Performance modelling and evaluation of high-performance parallel and distributed systems
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The growing use of clusters in diverse applications, many of which have real-time constraints, requires quality-of-service (QoS) support from the underlying cluster interconnect. All prior studies on QoS-aware cluster routers/networks have used simulation for performance evaluation. In this paper, we present an analytical model for a wormhole-switched router with QoS provisioning. In particular, the model captures message blocking due to wormhole switching in a pipelined router, and bandwidth sharing due to a rate-based scheduling mechanism, called VirtualClock. Then we extend the model to a hypercube-style cluster network. Average message latency for different traffic classes and deadline missing probability for real-time applications are computed using the model. We evaluate a 16-port router and hypercubes of different dimensions with a mixed workload of real-time and best-effort (BE) traffic. Comparison with the simulation results shows that the single router and the network models are quite accurate in providing the performance estimates, and thus can be used as efficient design tools.