High-Performance Computational Chemistry: Hartree-Fock Electronic Structure Calculations on Massively Parallel Processors

  • Authors:
  • Jeffrey L. Tilson;Mike Minkoff;Albert F. Wagner;Ron Shepard;Paul Sutton;Robert J. Harrison;Ricky A. Kendall;Adrian T. Wong

  • Affiliations:
  • Argonne National Laboratory, Argonne, IL, U.S.A.;Argonne National Laboratory, Argonne, IL, U.S.A.;Argonne National Laboratory, Argonne, IL, U.S.A.;Argonne National Laboratory, Argonne, IL, U.S.A.;Argonne National Laboratory, Argonne, IL, U.S.A.;Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, U.S.A.;Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, U.S.A.;Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, U.S.A.

  • Venue:
  • International Journal of High Performance Computing Applications
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

The parallel performance of the NWChem version 1.2&agr; parallel direct-SCF code has been characterized on five massively parallel supercomputers (IBM SP, Kendall Square KSR-2, CRAY T3D and T3E, and Intel Touchstone DELTA) using single-point energy calculations on seven molecules of varying size (up to 389 atoms) and composition (first-row atoms, halogens, and transition metals). The authors compare the performance using both replicated-data and distributed-data algorithms and the original McMurchie-Davidson and recently incorporated TEXAS integrals packages.