A unified energy-efficient topology for unicast and broadcast

  • Authors:
  • Xiang-Yang Li;Wen-Zhan Song;Weizhao Wang

  • Affiliations:
  • Illinois Institute of Technology, Chicago, IL;Washington State University Vancouver, WA;Illinois Institute of Technology, Chicago, IL

  • Venue:
  • Proceedings of the 11th annual international conference on Mobile computing and networking
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a novel communication efficient topology control algorithm for each wireless node to select communication neighbors and adjust its transmission power, such that all nodes together self-form a topology that is energy efficient simultaneously for both unicast and broadcast communications. We prove that the proposed topology is planar, which guarantees packet delivery if a certain localized routing method is used; it is power efficient for unicast-- the energy needed to connect any pair of nodes is within a small constant factor of the minimum under a common power attenuation model; it is efficient for broadcast: the energy consumption for broadcasting data on top of it is asymptotically the best compared with structures constructed locally; it has a constant bounded logical degree, which will potentially reduce interference and signal contention. We further prove that the average physical degree of all nodes is bounded by a small constant. To the best of our knowledge, this is the first communication-efficient distributed algorithm to achieve all these properties. Previously, only a centralized algorithm was reported in [3]. Moreover, by assuming that the ID and position of every node can be represented in O(log n) bits for a wireless network of n nodes, our method uses at most 13n messages, where each message is of O(log n) bits. We also show that this structure can be efficiently updated for dynamical network environment. Our theoretical results are corroborated in the simulations.