Characterizing the capacity region in multi-radio multi-channel wireless mesh networks

  • Authors:
  • Murali Kodialam;Thyaga Nandagopal

  • Affiliations:
  • Bell Labs, Lucent Technologies, Holmdel, NJ;Bell Labs, Lucent Technologies, Holmdel, NJ

  • Venue:
  • Proceedings of the 11th annual international conference on Mobile computing and networking
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Next generation fixed wireless broadband networks are being increasingly deployed as mesh networks in order to provide and extend access to the internet. These networks are characterized by the use of multiple orthogonal channels and nodes with the ability to simultaneously communicate with many neighbors using multiple radios (interfaces) over orthogonal channels. Networks based on the IEEE 802.11a/b/g and 802.16 standards are examples of these systems. However, due to the limited number of available orthogonal channels, interference is still a factor in such networks. In this paper, we propose a network model that captures the key practical aspects of such systems and characterize the constraints binding their behavior. We provide necessary conditions to verify the feasibility of rate vectors in these networks, and use them to derive upper bounds on the capacity in terms of achievable throughput, using a fast primal-dual algorithm. We then develop two link channel assignment schemes, one static and the other dynamic, in order to derive lower bounds on the achievable throughput. We demonstrate through simulations that the dynamic link channel assignment scheme performs close to optimal on the average, while the static link channel assignment algorithm also performs very well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.