An Explanation for the Logarithmic Connection between Linear and Morphological System Theory

  • Authors:
  • Bernhard Burgeth;Joachim Weickert

  • Affiliations:
  • Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Saarland University, Saarbrücken, Germany 66041;Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Saarland University, Saarbrücken, Germany 66041

  • Venue:
  • International Journal of Computer Vision
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Dorst/van den Boomgaard and Maragos introduced the slope transform as the morphological equivalent of the Fourier transform. Generalising the conjugacy operation from convex analysis it formed the basis of a morphological system theory that bears an almost logarithmic relation to linear system theory; a connection that has not been fully understood so far. Our article provides an explanation by disclosing that morphology in essence is linear system theory in specific algebras. While linear system theory uses the standard plus-prod algebra, morphological system theory is based on the max-plus algebra and the min-plus algebra. We identify the nonlinear operations of erosion and dilation as linear convolutions in the latter algebras. The logarithmic Laplace transform makes a natural appearance as it corresponds to the conjugacy operation in the max-plus algebra. Its conjugate is given by the so-called Cramer transform. Originating from stochastics, the Cramer transform maps Gaussians to quadratic functions and relates standard convolution to erosion. This fundamental transform relies on the logarithm and constitutes the direct link between linear and morphological system theory. Many numerical examples are presented that illustrate the convexifying and smoothing properties of the Cramer transform.