Dynamic delay-constrained minimum-energy dissemination in wireless sensor networks

  • Authors:
  • Hyung Seok Kim;Tarek F. Abdelzaher;Wook Hyun Kwon

  • Affiliations:
  • Samsung Electronics Co.;University of Illinois at Urbana-Champaign;Seoul National University

  • Venue:
  • ACM Transactions on Embedded Computing Systems (TECS)
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Disseminating data generated by sensors to users is one of useful functions of sensor networks. In probable real-time applications of sensor networks, multiple mobile users should receive data within their end-to-end delay constraint. In this paper, we propose a dynamic DElay-constrained minimum-Energy Dissemination (DEED) scheme. A dissemination tree (d-tree) is updated in a distributed way without regenerating the tree from scratch, such that energy consumption of the tree is minimized while satisfying end-to-end delay constraints. The d-tree is adjusted using delay estimation based on geometric distance. DEED increases the probability that packets arrive at users within an upper-bound end-to-end delay (UBED) and minimizes energy consumption in both building the d-tree and disseminating data to mobile sinks. Evaluation results show that DEED makes each node consume small energy resources and maintains fewer UBED misses when compared to Directed Diffusion and other baselines for sensor networks.