Learning and Inference in Parametric Switching Linear Dynamical Systems

  • Authors:
  • Sang Min Oh;James M. Rehg;Tucker Balch;Frank Dellaert

  • Affiliations:
  • Georgia Institute of Technology;Georgia Institute of Technology;Georgia Institute of Technology;Georgia Institute of Technology

  • Venue:
  • ICCV '05 Proceedings of the Tenth IEEE International Conference on Computer Vision - Volume 2
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We introduce parametric switching linear dynamic systems (P-SLDS) for learning and interpretation of parametrized motion, i.e., motion that exhibits systematic temporal and spatial variations. Our motivating example is the honeybee dance: bees communicate the orientation and distance to food sources through the dance angles and waggle lengths of their stylized dances. Switching linear dynamic systems (SLDS) are a compelling way to model such complex motions. However, SLDS does not provide a means to quantify systematic variations in the motion. Previously, Wilson 驴 Bobick presented parametric HMMs [21], an extension to HMMs with which they successfully interpreted human gestures. Inspired by their work, we similarly extend the standard SLDS model to obtain parametric SLDS. We introduce additional global parameters that represent systematic variations in the motion, and present general expectation-maximization (EM) methods for learning and inference. In the learning phase, P-SLDS learns canonical SLDS model from data. In the inference phase, P-SLDS simultaneously quantifies the global parameters and labels the data. We apply these methods to the automatic interpretation of honey-bee dances, and present both qualitative and quantitative experimental results on actual bee-tracks collected from noisy video data.