Storage Performance Virtualization via Throughput and Latency Control

  • Authors:
  • Jianyong Zhang;Anand Sivasubramaniam;Qian Wang;Alma Riska;Erik Riedel

  • Affiliations:
  • The Pennsylvania State University;The Pennsylvania State University;The Pennsylvania State University;Seagate Research Center, Pittsburgh;Seagate Research Center, Pittsburgh

  • Venue:
  • MASCOTS '05 Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

I/O consolidation is a growing trend in production environments due to the increasing complexity in tuning and managing storage systems. A consequence of this trend is the need to serve multiple users/workloads simultaneously. It is imperative to make sure that these users are insulated from each other by virtualization in order to meet any service level objective (SLO). This paper presents a 2-level scheduling framework that can be built on top of an existing storage utility. This framework uses a low-level feedback-driven request scheduler, called AVATAR, that is intended to meet the latency bounds determined by the SLO. The load imposed on AVATAR is regulated by a high-level rate controller, called SARC, to insulate the users from each other. In addition, SARC is workconserving and tries to fairly distribute any spare bandwidth in the storage system to the different users. This framework naturally decouples rate and latency allocation. Using extensive I/O traces and a detailed storage simulator, we demonstrate that this 2-level framework can simultaneously meet the latency and throughput requirements imposed by an SLO, without requiring extensive knowledge of the underlying storage system.