Transform based and search aware text compression schemes and compressed domain text retrieval

  • Authors:
  • Nan Zhang;Amar Mukherjee

  • Affiliations:
  • University of Central Florida;University of Central Florida

  • Venue:
  • Transform based and search aware text compression schemes and compressed domain text retrieval
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this dissertation, we make the following contributions: (1) Star family compression algorithms: We have proposed an approach to develop a reversible transformation that can be applied to a source text that improves existing algorithm's ability to compress. We use a static dictionary to convert the English words into predefined symbol sequences. These transformed sequences create additional context information that is superior to the original text. Thus we achieve some compression at the preprocessing stage. We have a series of transforms which improve the performance. Star transform requires a static dictionary for a certain size. To avoid the considerable complexity of conversion, we employ the ternary tree data structure that efficiently converts the words in the text to the words in the star dictionary in linear time. (2) Exact and approximate pattern matching in Burrows-Wheeler transformed (BWT) files: We proposed a method to extract the useful context information in linear time from the BWT transformed text. The auxiliary arrays obtained from BWT inverse transform brings logarithm search time. Meanwhile, approximate pattern matching can be performed based on the results of exact pattern matching to extract the possible candidate for the approximate pattern matching. Then fast verifying algorithm can be applied to those candidates which could be just small parts of the original text. We present algorithms for both k-mismatch and k-approximate pattern matching in BWT compressed text. A typical compression system based on BWT has Move-to-Front and Huffman coding stages after the transformation. We propose a novel approach to replace the Move-to-Front stage in order to extend compressed domain search capability all the way to the entropy coding stage. A modification to the Move-to-Front makes it possible to randomly access any part of the compressed text without referring to the part before the access point. (3) Modified LZW algorithm that allows random access and partial decoding for the compressed text retrieval: Although many compression algorithms provide good compression ratio and/or time complexity, LZW is the first one studied for the compressed pattern matching because of its simplicity and efficiency. Modifications on LZW algorithm provide the extra advantage for fast random access and partial decoding ability that is especially useful for text retrieval systems. Based on this algorithm, we can provide a dynamic hierarchical semantic structure for the text, so that the text search can be performed on the expected level of granularity. (Abstract shortened by UMI.)