Sprinkler: A Reliable and Energy Efficient Data Dissemination Service for Wireless Embedded Devices

  • Authors:
  • Vinayak Naik;Anish Arora;Prasun Sinha;Hongwei Zhang

  • Affiliations:
  • Ohio State University;Ohio State University;Ohio State University;Ohio State University

  • Venue:
  • RTSS '05 Proceedings of the 26th IEEE International Real-Time Systems Symposium
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present Sprinkler, a reliable data dissemination service for wireless embedded devices which are constrained in energy, processing speed, and memory. Sprinkler embeds a virtual grid over the network whereby it can locally compute a connected dominating set of the devices to avoid redundant transmissions ,and a transmission schedule to avoid collisions. Sprinkler transmits O(1) times the optimum number of packets in O(1) of the optimum latency; its time complexity is O(1). Thus, Sprinkler is suitable for resource-constrained wireless embedded devices. We evaluate the performance of Sprinkler in terms of the number of packet transmissions and the latency, both in an outdoor and an indoor environment. Our indoor evaluation is based on an implementation in the Kansei testbed, that houses 210 XSSs whose transmission power is controllable to even low ranges. We compare Sprinkler with the existing reliable data dissemination services, analytically or using simulations also. Our evaluationsshow that Sprinkler is not only energy efficientas compared to existing schemes but also have less latency. Further, the energy consumption of nodes and the latency grows linearly as a function of newly added nodes as network grows larger.