The hunting of the bump: on maximizing statistical discrepancy

  • Authors:
  • Deepak Agarwal;Jeff M. Phillips;Suresh Venkatasubramanian

  • Affiliations:
  • AT&T Labs - Research;Duke University;AT&T Labs - Research

  • Venue:
  • SODA '06 Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Anomaly detection has important applications in biosurveilance and environmental monitoring. When comparing measured data to data drawn from a baseline distribution, merely, finding clusters in the measured data may not actually represent true anomalies. These clusters may likely be the clusters of the baseline distribution. Hence, a discrepancy function is often used to examine how different measured data is to baseline data within a region. An anomalous region is thus defined to be one with high discrepancy.In this paper, we present algorithms for maximizing statistical discrepancy functions over the space of axis-parallel rectangles. We give provable approximation guarantees, both additive and relative, and our methods apply to any convex discrepancy function. Our algorithms work by connecting statistical discrepancy to combinatorial discrepancy; roughly speaking, we show that in order to maximize a convex discrepancy function over a class of shapes, one needs only maximize a linear discrepancy function over the same set of shapes.We derive general discrepancy functions for data generated from a one- parameter exponential family. This generalizes the widely-used Kulldorff scan statistic for data from a Poisson distribution. We present an algorithm running in O(1/ε n2 log2n) that computes the maximum discrepancy rectangle to within additive error ε, for the Kulldorff scan statistic. Similar results hold for relative error and for discrepancy functions for data coming from Gaussian, Bernoulli, and gamma distributions. Prior to our work, the best known algorithms were exact and ran in time O(n4).