MATSLISE: A MATLAB package for the numerical solution of Sturm-Liouville and Schrödinger equations

  • Authors:
  • V. Ledoux;M. Van Daele;G. Vanden Berghe

  • Affiliations:
  • Ghent University, Gent, Belgium;Ghent University, Gent, Belgium;Ghent University, Gent, Belgium

  • Venue:
  • ACM Transactions on Mathematical Software (TOMS)
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

MATSLISE is a graphical MATLAB software package for the interactive numerical study of regular Sturm-Liouville problems, one-dimensional Schrödinger equations, and radial Schrödinger equations with a distorted Coulomb potential. It allows the fast and accurate computation of the eigenvalues and the visualization of the corresponding eigenfunctions. This is realized by making use of the power of high-order piecewise constant perturbation methods, a technique described by Ixaru. For a well-outlined class of problems, the implemented algorithms are more efficient than the well-established SL-solvers SL02f, SLEDGE, SLEIGN, and SLEIGN2, which are included by Pryce in the SLDRIVER code that has been built on top of SLTSTPAK.