A dichotomy theorem for constraint satisfaction problems on a 3-element set

  • Authors:
  • Andrei A. Bulatov

  • Affiliations:
  • Simon Fraser University, Burnaby, Canada

  • Venue:
  • Journal of the ACM (JACM)
  • Year:
  • 2006

Quantified Score

Hi-index 0.02

Visualization

Abstract

The Constraint Satisfaction Problem (CSP) provides a common framework for many combinatorial problems. The general CSP is known to be NP-complete; however, certain restrictions on a possible form of constraints may affect the complexity and lead to tractable problem classes. There is, therefore, a fundamental research direction, aiming to separate those subclasses of the CSP that are tractable and those which remain NP-complete.Schaefer gave an exhaustive solution of this problem for the CSP on a 2-element domain. In this article, we generalise this result to a classification of the complexity of the CSP on a 3-element domain. The main result states that every subproblem of the CSP is either tractable or NP-complete, and the criterion separating them is that conjectured in Bulatov et al. [2005] and Bulatov and Jeavons [2001b]. We also characterize those subproblems for which standard constraint propagation techniques provide a decision procedure. Finally, we exhibit a polynomial time algorithm which, for a given set of allowed constraints, outputs if this set gives rise to a tractable problem class. To obtain the main result and the algorithm, we extensively use the algebraic technique for the CSP developed in Jeavons [1998b], Bulatov et al.[2005], and Bulatov and Jeavons [2001b].