A combinatorial characterization of the testable graph properties: it's all about regularity

  • Authors:
  • Noga Alon;Eldar Fischer;Ilan Newman;Asaf Shapira

  • Affiliations:
  • Tel-Aviv University and IAS;Israel Institute of Technology;Haifa University;Tel-Aviv University

  • Venue:
  • Proceedings of the thirty-eighth annual ACM symposium on Theory of computing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

A common thread in recent results concerning the testing of dense graphs is the use of Szemerédi's regularity lemma. In this paper we show that in some sense this is not a coincidence. Our first result is that the property defined by having any given Szemerédi-partition is testable with a constant number of queries. Our second and main result is a purely combinatorial characterization of the graph properties that are testable with a constant number of queries. This characterization (roughly) says that a graph property P can be tested with a constant number of queries if and only if testing P can be reduced to testing the property of satisfying one of finitely many Szemerédi-partitions. This means that in some sense, testing for Szemerédi-partitions is as hard as testing any testable graph property. We thus resolve one of the main open problems in the area of property-testing, which was raised in the 1996 paper of Goldreich, Goldwasser and Ron [25] that initiated the study of graph property-testing. This characterization also gives an intuitive explanation as to what makes a graph property testable.