Self-reproducible DEVS formalism

  • Authors:
  • Sangjoon Park;Byunggi Kim

  • Affiliations:
  • Information and Media Technology Institute, Soongsil University, Republic of Korea;School of Computing, Soongsil University, Republic of Korea

  • Venue:
  • Journal of Parallel and Distributed Computing - Special issue: Design and performance of networks for super-, cluster-, and grid-computing: Part II
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

System reproduction model to the growing system structure can be used to design modeling formalisms for variable system architectures having historical characteristics. We introduce a discrete event system specifications (DEVS)-based extended formalism that a system structure gradually grows through self-reproductions of system components. The proposed formalism is applied to atomic DEVS modeling and coupled DEVS modeling. As extended-atomic DEVS model, atomic self-reproduction (SR) DEVS modeling to a system component makes virtual-child atomic DEVS models. By SR DEVS modeling, a child coupled model can be also reproduced from a parent coupled model. When a system component model reproduces its system component, a child component model can receive its parent model characteristics including determined role or behavior, and include different structure model characteristics. A virtual-child model that has its parent characteristics can also reproduce next child model which may show similar attributes of the grand-parent model.