Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics

  • Authors:
  • Antoine Miné

  • Affiliations:
  • École Normale Supérieure, Paris, France

  • Venue:
  • Proceedings of the 2006 ACM SIGPLAN/SIGBED conference on Language, compilers, and tool support for embedded systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a memory abstraction able to lift existing numerical static analyses to C programs containing union types, pointer casts, and arbitrary pointer arithmetics. Our framework is that of a combined points-to and data-value analysis. We abstract the contents of compound variables in a field-sensitive way, whether these fields contain numeric or pointer values, and use stock numerical abstract domains to find an overapproximation of all possible memory states---with the ability to discover relationships between variables. A main novelty of our approach is the dynamic mapping scheme we use to associate a flat collection of abstract cells of scalar type to the set of accessed memory locations, while taking care of byte-level aliases---i.e., C variables with incompatible types allocated in overlapping memory locations. We do not rely on static type information which can be misleading in C programs as it does not account for all the uses a memory zone may be put to.Our work was incorporated within the Astrée static analyzer that checks for the absence of run-time-errors in embedded, safety-critical, numerical-intensive software. It replaces the former memory domain limited to well-typed, union-free, pointer-cast free data-structures. Early results demonstrate that this abstraction allows analyzing a larger class of C programs, without much cost overhead.