SWIFT--A new real time commit protocol

  • Authors:
  • Udai Shanker;Manoj Misra;Anil K. Sarje

  • Affiliations:
  • Department of E. & C.E., Indian Institute of Technology, Roorkee, India;Department of E. & C.E., Indian Institute of Technology, Roorkee, India;Department of E. & C.E., Indian Institute of Technology, Roorkee, India

  • Venue:
  • Distributed and Parallel Databases
  • Year:
  • 2006

Quantified Score

Hi-index 0.01

Visualization

Abstract

Although there are several factors contributing to the difficulty in meeting distributed real time transaction deadlines, data conflicts among transactions, especially in commitment phase, are the prime factor resulting in system performance degradation. Therefore, design of an efficient commit protocol is of great significance for distributed real time database systems (DRTDBS). Most of the existing commit protocols try to improve system performance by allowing a committing cohort to lend its data to an executing cohort, thus reducing data inaccessibility. These protocols block the borrower when it tries to send WORKDONE/PREPARED message [1, 6, 8, 9], thus increasing the transactions commit time. This paper first analyzes all kind of dependencies that may arise due to data access conflicts among executing-committing transactions when a committing cohort is allowed to lend its data to an executing cohort. It then proposes a static two-phase locking and high priority based, write-update type, ideal for fast and timeliness commit protocol i.e. SWIFT. In SWIFT, the execution phase of a cohort is divided into two parts, locking phase and processing phase and then, in place of WORKDONE message, WORKSTARTED message is sent just before the start of processing phase of the cohort. Further, the borrower is allowed to send WORKSTARTED message, if it is only commit dependent on other cohorts instead of being blocked as opposed to [1, 6, 8, 9]. This reduces the time needed for commit processing and is free from cascaded aborts. To ensure non-violation of ACID properties, checking of completion of processing and the removal of dependency of cohort are required before sending the YES-VOTE message. Simulation results show that SWIFT improves the system performance in comparison to earlier protocol. The performance of SWIFT is also analyzed for partial read-only optimization, which minimizes intersite message traffic, execute-commit conflicts and log writes consequently resulting in a better response time. The impact of permitting the cohorts of the same transaction to communicate with each other [5] on SWIFT has also been analyzed.