Supporting ad-hoc ranking aggregates

  • Authors:
  • Chengkai Li;Kevin Chen-Chuan Chang;Ihab F. Ilyas

  • Affiliations:
  • University of Illinois at Urbana-Champaign, Urbana, IL;University of Illinois at Urbana-Champaign, Urbana, IL;University of Waterloo, Waterloo, Ontario, Canada

  • Venue:
  • Proceedings of the 2006 ACM SIGMOD international conference on Management of data
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a principled framework for efficient processing of ad-hoc top-k (ranking) aggregate queries, which provide the k groups with the highest aggregates as results. Essential support of such queries is lacking in current systems, which process the queries in a naïve materialize-group-sort scheme that can be prohibitively inefficient. Our framework is based on three fundamental principles. The Upper-Bound Principle dictates the requirements of early pruning, and the Group-Ranking and Tuple-Ranking Principles dictate group-ordering and tuple-ordering requirements. They together guide the query processor toward a provably optimal tuple schedule for aggregate query processing. We propose a new execution framework to apply the principles and requirements. We address the challenges in realizing the framework and implementing new query operators, enabling efficient group-aware and rank-aware query plans. The experimental study validates our framework by demonstrating orders of magnitude performance improvement in the new query plans, compared with the traditional plans.